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A three-dimensional problem in the theory of elasticity of a stressed solid in a domain of small thickness (diameter) is converted 
into a problem in the theory of membranes (strings). The averaged problems obtained enable one to describe membranes (strings) 
with inhomogeneities of a size comparable with their thickness. The problems are analysed using the asymptotic method of 
averaging. © 1998 Elsevier Science Ltd. All fights reserved. 

A method of converlting a three-dimensional problem in the theory of elasticity for a thin domain into 
a problem in the theory of plates was described in [1, 2]. A transition from a three-dimensional problem 
in the theory of elasticity in a domain of small diameter to a problem in the theory of beams was made 
in [3, 4]. An asymptotic method [5, 6] was used in the investigation which has the advantage that it is 
applicable both to classical homogeneous plates and beams as well as to inhomogeneous periodic 
structures with inhomogeneities with dimensions comparable with the thickness (homogeneous plates 
and beams having inhomogeneities with characteristic dimensions which are significantly greater than 
the thickness have been considered previously [7, 8]). The application of an asymptotic method to 
stressed structures was begun in [9--14]: it has been applied to three-dimensional structures in [9, 12], 
to thin plates in [13] and to beams of small diameter in [14, 15]. In particular, averaged equations for 
the instability of inhomogeneous plates and beams have been obtained. Problems involving inhomo- 
geneous membranes and strings, in which both the small thickness and the initial stresses play a decisive 
role, touch directly on problems of the above type. As far as we are aware, the derivation of the equations 
of inhomogeneous membranes and strings from three-dimensional equations in the theory of elasticity 
has not been considered previously (membranes with inhomogeneities of a characteristic size which is 
significantly greater than the thickness have been studied). In this paper, the problem is considered at 
the level of constructing a formal asymptotic expansion [5]. Limiting problems are obtained which yield 
the equations of inhomogeneous membranes and strings. 

While there is a certain resemblance between the methods which have been used previously [2, 9-16] 
and those used in this paper, the results obtained do not follow from the results of the above-mentioned 
papers. This is due to the fact that the "mechanics" of a problem is mainly governed by the actual form 
of the first few terms of the asymptotic expansion [6] and, to a lesser degree, by the general form of 
the series. The treatment presented also explains the reason for the "inoperability" of a number of the 
equilibrium equations from [2, 9-16]; they do not correspond to the theory of plates and beams (these 
equations are "overlooked" within their framework) but to the theory of membranes and strings. 

The issues related to the practical application of inhomogeneous and, in particular, reinforced mem- 
branes, are described in [17]. 

1. A MEMBRANE 

We consider a domain Q~ which is obtained by the periodic repetition of a certain periodic cell (PC) 
with a periodicity P,.: in the x#2 plane (Fig. 1). The characteristic size of this PC (which is identical to 
the characteristic thickness of the membrane) is a small quantity e which is formalized in the form 
e --> 0. When e ~ 0, the domain Q~ contracts to a two-dimensional domain S in the x~x 2 plane. The 
stress in the materi,'d occupying the domain Q~, denoted by o/~, are determined from the solution of a 
problem in the theory of elasticity. We shall assume that the elasticity constants of the membrane material 

. 1 aiita and the initial slxesses o/j are of the same order E-. It is also assumed that the orders of magnitude 
are identical (in classical theory, the stiffnesses are neglected compared with the stresses) due to the 
fact that it is impossible to create initial stresses o~ of a greater order of magnitude when aijta in the 
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Fig. 1. 

case of bounded deformations in the plane of a plate. Then [18], the equilibrium equations for a body 
with initial stresses have the form 

3o o / 0xj = e-l f/ in Qt (1.1) 

oijnj = gi ~ on F~; u t (x) = 0 on Fo 

where Qe is the domain occupied by the membrane and F~, F0 is its surface (Fig. 1). 
The relation between the current stresses o0., the strains u t and the initial stresses can be written in 

the form [10, 11, 18] 

oij = e-l  SiijktOUk I ~x t 

d~ijkl = aijta(x I E) + ff ~l(i, x I E)Si~ 

(1.2) 

(1.3) 

where aij~ are the components of the elasticity constants tensor, 5~ = 1, if i = k, and 8ik = 0 if i # k 
and x = (xl, x2) are the slow variables in the plane of the membrane. The functions aiFta(Y), a~/(i, y) 
are periodic with respect to Yl and Y2 with a PC $1 ($1 is the projection of  the PC P1 on'the Yff2 plane 
(Fig. 1) in accordance with the periodic structure of the membrane. 

We introduce the notation 

1 

I()ay, = mesS, l(')ay (') = mesSi ~1 v 

(the first expression is an average over the PC P1 = E-lee = {Y = x/e: x ~ Pc} in the dimensionless (fast) 
variables y = vale (Fig. 1) while the second is an average over the lateral surface ~/of the PC Pt. 

The derivative of a function of the form f(ff, y) is calculated by replacing the differential operator 
according to the rule 

Of ___> f , otx + E_l f ,cty Of _...)E_l/3y (0t=2,3)  
Ox a ' Ox 3 

=af /ox., f, iy=of /oy,) 

(1.4) 

Henceforth, Latin lower-case subscripts take the values 1, 2 and 3 while Greek subscripts and 
superscripts take the values 1 and 2, and m = -1, 0 . . . .  ; n = 0, 1, . . . .  

We shall seek a solution of problem (1.1)-(1.3) in a form which is analogous to that which has been 
used previously [2] but, in accordance with (1.2), we commence the expansion for the stresses a 0. with 
a term of the order of  e -1 
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u t = u ¢ ° ) ( ~ ) + e u O ) ( i , y ) + . . . =  ~ " u ( n ) ( i , y )  
n=O 

o 0 = e : ' l o ~ - t ) ( i , y ) +  . . . .  E e m o ~ m ) ( i , y )  
m=-I 

(1.5) 

(1.6) 

The terms of expansion (1.6) satisfy the equations [2] 

Proposition 1. The equality 

o(m) 0 (m-l) = 0 (o~-2)  _ O) ij , jy "1" i~, ff.r (1.8) 

which are obtained by substituting (1.6) into (1.1) and taking account of (1.4) (for more detail, see [2]). 
Here, it is only the case when m --- -1 which is of interest. For this value, equality (1.8) gives 

o C . - 9  = 0 q,JY 

On substituting (1.8)here, we arrive in the usual way [2] at the cellular problem 

(~g~t(i,y)XL~ly + s~iipa(i,y)),iy = 0 in PI 

(~ipd(i,y)JfL~t~ + s i i jm( i , y ) )n  j = 0 on 

The function drY(y) is periodic in YlY2 with a PC S 1. 
As was stipulated above, suppose that o~ are determined from the solution of a problem in the theory 

of elasticity. Then, using (1.3), we have 

(Saijkt - aokt).j r = o~t,jySik = 0 in Pl 

( ~ ijta - aijkt )n j = O ~t, n jS ik = 0 on ¥ 

Ar3ct (Y) = - y 3 e a  (1.11) 

holds. 
In the case of (1.11), we have (-sdij~3 + s~i.3a ) jy = 0 by virtue of the symmetry of a#kl and (1 10) 

Furthermore, (-sd#~ + s~raa)n i = 0 on ~/by vtrtue of the symmetry of a~ta and (1.10). 
When account is t~tken ~f Assumption 1, we obtain a representation ~f u O) in terms of the solution 

of the cellular problem (1.9) 

u O) = -Y3eau~°)~ (~) + A ̀1~ (y)u~°~ (~) + v(i)  (1.12) 

This solution is identical in its form to the solution from [2] but the coefficients of the cellular problem 
(1.9) differ from the elasticity constants aiyu and depend on the initial stresses. 

Substitution of (1.:12) into (1.8) gives 

Or(:/-1) ---- (--S~[ijct 3 + S~ ij 3a )U (30 )ax ( i ) + ( ,~  ijliot + S~ d~ [kz ~" (0) t" 7, X ijkl k,ly J~, l lx  '~AI (1.13) 

By making use of the definition of s~iju (1.3), we obtain from (1.13) that 

O~ -1) * 8 + * (0) - = (-%3 i~ %~8i3)u3.~ (x) + ( ~ 0 ~  + s~okt 2¢~y)U~°)~ (~) (1.14) 

In the case in question, the equilibrium stresses N# = (oijt-1)l are identical to those obtained in [2] 
and have the form (for a detailed derivation of the equilibrium equation for a membrane, see [1, 2, 6]) 

(1.10) 

(1.9) 

(1.7) 0.I~1)  = ~ . (I)  , ,a  , (0)  
ijklUk,ly .4- o.~ijlax~k,o~ x 

Substituting (1.5) into (1.2) and taking account of (1.4), we obtain a relation and, on equating the 
expressions accompanying e in this relation, we find that 
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Nar,w =(fa), N3v,3x =(f3)+(g~-g3 ) r (1.15) 

We now consider (1.14) for different values of the indices. In the case when i = 3,j = T, Eq. (1.14), 
taking (1.3) into account, gives 

(1.16) * (o) - + 3~t"' k.ly/"l~,o~(i) N37 = ((~-~l,) = ((~.~t)//3o.x (x) (s~3.~ + ~ icl~x \,(0) 

For i = r , j  = 7, taking (1.3) into account. Eq. (1.14) gives 

~a  u(O) - Nit. ( : ((~.~11') : -({~;3)//~°)c~x(x) +(~/~k~ + ,.q~k.,~ d~k,ly) I],o.x (X) (1.17) 

The cellular problem (1.9) is now considered. We multiply the equation from (1.9) byy 3 and integrate 
the result by parts over the PC P1. When account is taken of the boundary condition, we obtain from 
(1.9) and the periodicity of d¢ ~ and Y3 with respect to Yl and Y2, that 

(~ /3 t t .~y  + s~i31~) = 0 (1.18) 

Using (1.18), the symmetry of aiik~ and the definition of S~k/, the last term on the right-hand side of 
(1.16) can be rewritten in the form 

((O31~Tlt --(~¥1~)3k)d~k.ly)+({~3.)~. 
Proposition 2. If o,~ are determined from the solution of a problem in the theory of elasticity then 

( ' )  I~i3 = O. 

The proof of this is analogous to the proof of relation (1.18). As a result, (1.16) and (1.17) take the 
form 

where 

--  AI* , ( 0 )  a _ n  (0) 
N3"f -- "~3 ,o .x  --/~Ul~,o.x 

N~ = ~ , (o) 

(1.19) 

(1.20) 

* * * ~ * a13 N~ = (o,~), R~=(O31~¥.ly)--((~ll~3,1y ) 

Here, N~x are the initial stresses in the plane of the membrane a n d A ~  are the averaged elasticity 
constants of the stressed body (which is two-dimensi0nal in the case under Consideration). The quantifies 
A ryl~, generally speaking, depend on the prior stresses in the plane of the membrane. This dependence 
is analogous to that found in [10-13]. 

The boundary conditions for the strains have the form 

( = = 1 , 2 )  on ( 1 . 2 1 )  

on o s  ( 1 . 2 2 )  

The equilibrium equations (1.15) when (fa) = 0 with constitutive equation (1.20) and boundary 
condition (1.21) have the solution ua(~) = 0 (subject to the condition that the initial stresses do not 
cause stability loss of the membrane as a plane body). The latter condition is nearly always satisfied in 
practice since the initial stresses are small compared with the elasticity constants [10, 11]. Then, (1.19) 
takes the form 

with the equilibrium equation 

= ~r* . Co) ( 1 . 2 3 )  N3y , • Va,~3,ax 
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(1.24) 

and boundary conditiion (1.22). 
Equations (1.23) and (1.24) can be transformed into the classical equation for the flexure of a membrane 

The situation is different from the classical one when there are non-zero forces of the order of e -1 
in the plane of the membrane. 

A homogeneous membrane. In the case of a homogeneous membrane ~1~ is solely a function o fy  3 
and t~*3 = 0, by virtue of which Rvl ~ = 0,,4~rl~ = (s~r~x + s~sdC~ar) .  Hence, Eqs (1.19) and (1.20) 
are not connected in this case. 

Layered membranes. Suppose that a membrane is made up of layers of isotropic materials which 
are parallel to the xr~:2 plane. Then, as in the preceding case, ./¢a~ is solely a function of y3 and t~73 = 0 
and, by virtue of this, Rvl ~ = 0. 

Thegeneral case. It is well known [2, 6] that the local stresses a/~ are associated with the global strains 
U in the plane of an inhomogeneous body with a periodic structure by a formula of the type 

a 0 = (aiyAB + ao~tN~,A.t~)UA.nx (A, B -  1, 2) (1.25) 

Substituting (1.25) into the formula for R ~ ,  we obtain 

+ (a3lnmNfln,ny.]~y,ly) -- (ayiABJ~3,ty) -- (a~irnnNm,ny 3,ly)]UA,Bx 

In membranes made of isotropic materials, of the a31aB (1 = 1, 2, 3; A, B = 1, 2) only a33AB is non- 
zero and, of a ~ . ~  (7 = 1, 2) only avs,~ is non-zero. Then, in the case in question 

1 ~  = [(a33AA d~y,3y ) + ( a3lnmNrn ny J~y,lv ) - ( a ~  AB']~3,Sy ) -- ( a'tlmn N~n.ny "]~ 3,ty )] U A,Bx 

2. A S T R I N G  

We now consider a domain of  small diameter Q~ which is obtained by periodic repetition of a certain 
periodic cell (PC) along the xl axis (Fig. 2). The characteristic size of this PC (which is identical to 
the characteristic dietmeter of the string) e "~ 1. When e ~ 0, the domain Q~ contracts to an interval 
[-1, 1] on the Xl axis The stresses a~ in the material, which occupies the domain Q~, are determined 
from the solution of  a problem in the theory of elasticity. 

Fig. 2. 
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We shall assume that the elastici.ty constants of the string material a#~ and the initial stresses o~. are 
of the same order of magnitude e -2. 

Again, we take the orders of magnitude to be identical although, in classical theory, the stiffnesses 
are neglected compared with the stresses. The equilibrium equations for the body then have the 
form of (1.1)-(1.3) [7], where Qe is the domain occupied by the string, and F~ and F0 is its surface 
(Fig. 2). 

In this case, the relation between the actual stresses o;j, the strains u ~ and the initial stresses can be 
written in the form [10, 11, 18] 

ffij = e-2"-~ij~l(Xl ,Y)~Uk I ~xl 

sd ijkt = ai.ila (Y) + o~t (xl, Y)8ik 

(2.1) 

(2.2) 

where Xl is a slow variable along the string axis. The functions ao.u(y), o~(xl, y) are periodic with respect 
toy1 with period m (Fig. 2) in accordance with the periodic structure of the string. 

We use the notation 

(> = ± I (-)ay, = ± I (.)dy 
m ~ m p~ 

to denote the average over the PC P1 = e-tP~ = {Y = x/e: x e Pt} in the dimensionless (fast) variables 
y = x/e (Fig. 2) and the average over the lateral surface 7 of the PC P1. 

The derivative of a function of the form f(Xl, y) is calculated by replacing the differential operator 
according to the rule [19] 

~ f  ..-> f ,  l x + e - l f ,  ly, ~ f  ~e-lf.ar(ot=2,3) (2.3) 
~xl 3x~ 

(f. y = af / ayi, f, x = / 

Henceforth, Latin subscripts take the value 1, 2 and 3 and Greek subscripts take the values of 2 and 
3, a n d m = - 2 , - 1  . . . .  ; n = 0 , 1 , . . . .  

We shall seek a solution of problem (1.1)-(1.3) in a form which is analogous to that used previously 
[4] but, in accordance with (2.2), we shall commence the expansion for the stresses trij with a term of 
the order of e -2 

u ~ = uf°)(x~)+euO)(xl,y)+ .... ~, e"u<~)(xl,y) 
n=O 

(2.4) 

ffij=e-2Ol~2)(xl,Y)+ . . . .  ~. emO(m)(Xl ,y) 
mffi-2 

(2.5) 

Substituting (2.4) and (2.5) into (2.1) and taking account of (2.3), we obtain 

= ~ ,-~',-ijkl~k,ly - -~  ,-~ijkl~k,ix 
m=-2 n=O 

(2.6) 

On equating the expressions accompanying E -2 in (2.6), we obtain 

0(-2) (I) 
= St~ijkl (XI' Y)/~k,ly + S~ijkl (Xl, Y)u(kO?x (2.7) 

The terms of expansion (2.5) satisfy the equations [4] 

¢~!m.) ~.,~(m-t) =0  inP I t"I(m)" = 0 o n y  (2.8) q,o' -- ~i l , lx  ' --ij i~j 

which are obtained by substituting (2.5) into (1.1) and taking account of (2.3) (for more detail, see 
[4, 6]). Here 7 is the lateral surface of the PC P1, and we are only interested in the ease when m = -2. 
In this case (2.8) gives 
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oC.:-2.) = 0 n Pt, ° f -2 ) -  = 0 o n ¥  (2.9)  ff,jy --ij i,j 

Substituting (2.7) here, we arrive at the cellular problem 

(sa~pa(x l,y)A'{,ty +M~jpl(xl,Y))jy = 0 in p~ 
(2.10) 

(Mq~(xt, Y)Ar~,ty + "~ij# (xl,y))nj = 0 on TNP(y) 

which is periodic in Y:L with period m. 
Suppose that the stresses a/~, as was stipulated above, are determined from the solution of a problem 

in the theory  o f  elasticity. Then ,  (1.10) is satisfied in the case  o f  these  stresses.  

Proposition 3. 

Na(Y)  = -Yael (2.11) 

For (2.11), we have (--S~#lct + S~//'od ) • = 0 by virtue of the symmetry ofaq~ and (1.10). Furthermore, 
(-M/la + MOm)nj = 0 in yby virtue of the  symmetry of a#ta and (2.10). 

~ e n  account is taken of Proposition 3, we obtain a representation of u (1) in terms of the solution 
of the cellular problem (2.10) 

u(') = -Yaelu{a°Ix (xl) + N i (Y)U~°l)x(Xi } (2.12) 

This solution is identical in for to the solution from [4], but the coefficients of the cellular problem 
(2.10) differ from the elasticity constants aq~ and depend on the initial stresses. 

Substituting expressions (2.12) into (2.7) and using the definition of Mqtd (2.2), we obtain 

* * (0) i <0) (2.13) O17 2) =(--Oj~taii +Ojl~iot)U~t,lx(Xl)+(~ijll + ~ijkld~fk,ly)Ul.ix(Xl) 

In the ease under consideration, the equilibrium equations for the stresses N /=  (o/1 (-2)) are identical 
to those obtained previously [4] 

NI , ix  = (fl), Not.lx = (for) + (ga)¥ (2.14) 

Equalities (2.13) enable us to obtain expressions for the stresses in terms of the deformation 
characteristics. 

We will now consider equalities (2.13) for different values of the subscripts while taking equality (2.2) 
into consideration, we have 

I (0) (O;a)u(aOlx (i = 1) NI = (O~l 2)) = ('~iill +"q~llkld~k h,)Ui,lx - 

--  XVll / t s~ , ix  "F ("~lli +'~ikl '~ k,ly)Ul,lx (i = ~) 

(2.15) 

(2.16) 

Proposition 4. If o~ are determined from the solution of a problem in the theory of elasticity, then 
= o .  

In order to verify this, we multiply the equilibrium equation o~jy = 0 byya and integrate the result 
over the PC P1, taking account of the boundary condition o,~nj = 0 on T and the periodicity of all 
the functions (including y~) with respect to Yl. 

As a result, (2.15) and (2.16) take the form 

Ni _ ~ ,  (o) .a. t,_, (o) . . . .  i,lx, NI~ = N~U~,lx - "W'l,ix 

= + s~n,rK~,ty), N~ = (O~l) (2.17) 

Here N~ is the initial axial stress of the string, A are the averaged elasticity constants of the stressed 
body (which is one-dflaaensional in the case in question). The quantityA, generally speaking, depends 
of the prior stress in the string. This dependence is analogous to that found previously in [10-13]. 
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The boundary conditions for the strains have the form 

= o, = 0 (2.18) 

The equilibrium equations when (f l)  = 0 with the constitutive equations (2.15) and boundary condition 
(2.18) have the solution Ul(°)(Xl) =- 0 (subject to the condition that the initial stresses o~ do not cause 
any stability loss of the string as a one-dimensional body, that is, as a rod). The last condition is always 
satisfied in practice since the initial stresses are small compared with the elasticity constants [10, 11]. 
Then, (2.17) takes the form 

with the equilibrium equation 

and boundary condition (2.18). 

- N*. ¢0) (2.19) NI~ - 1,,1~,1 x 

NP.lx = (fP) + (gP)v (2.20) 

Equations (2.19) and (2.20) can be transformed into the classical equation of a string 

At*. (0) = + 

The situation is different from the classical one when there are non-zero forces of the order of ~-2 
acting along the xl axis. 
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